Theoretical Study of Nickel-Catalyzed Selective Alkenylation of Pyridine: Reaction Mechanism and Crucial Roles of Lewis Acid and Ligands in Determining the Selectivity

Vijay Singh,[†] Yoshiaki Nakao,[‡] Shigeyoshi Sakaki,^{*,§} and Milind M. Deshmukh^{*,†}®

[†]Department of Chemistry, Dr. Harisingh Gour Central University, Sagar 470003, India

[‡]Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan [§]Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraki-cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan

Supporting Information

ABSTRACT: Selective alkenylation of pyridine is challenging in synthetic organic chemistry due to the poor reactivity and regioselectivity of the aromatic ring. We theoretically investigated Ni-catalyzed selective alkenylation of pyridine with DFT. The first step is coordination of the pyridine–AlMe₃ adduct with the active species Ni⁽⁰⁾(NHC)(C₂H₂) **1** in an η^2 -fashion to form an intermediate **Int1**. After the isomerization of **Int1**, the oxidative addition of the C–H bond of pyridine across the nickel–acetylene moiety occurs via a transition state **TS2** to form a Ni^(II)(NHC) pyridyl vinyl intermediate **Int3**. This oxidative addition is rate-determining. The next step is C–C bond formation between pyridyl and vinyl groups leading to the formation of vinyl-pyridine (**P1**). One of the points at issue in this type of functionalization is

how to control the regioselectivity. With the use of Ni(NHC)/AlMe₃ catalyst, the C⁴- and C³-alkenylated products ($\Delta G^{\circ \ddagger} = 17.4$ and 21.5 kcal mol⁻¹, respectively) are formed preferably to the C² one ($\Delta G^{\circ \ddagger} = 22.0$ kcal mol⁻¹). The higher selectivity of the C⁴-alkenylation over the C³ and the C² ones is attributed to the small steric repulsion between NHC and AlMe₃ in the C⁴-alkenylation. Interestingly, with Ni(P(*i*-Pr)₃)/AlMe₃ catalyst, the C²-alkenylation occurs more easily than the C³ and C⁴ ones. This regioselectivity arises from the smaller steric repulsion induced by P(*i*-Pr)₃ than by bulky NHC. It is notable that AlMe₃ accelerates the alkenylation by inducing the strong CT from Ni to pyridine–AlMe₃. In the absence of AlMe₃, pyridine strongly coordinates with the Ni atom through the N atom, which increases Gibbs activation energy ($\Delta G^{\circ \ddagger} = \sim 27$ kcal mol⁻¹) of the C–H bond activation. In other words, AlMe₃ plays two important roles, acceleration of the reaction and enhancement of the regioselectivity for the C⁴-alkenylation.

INTRODUCTION

Pyridine is one of the important chemicals for synthesis of large numbers of derivatives which are useful in pharmaceutics, natural products,² and optical materials.³ Thus, functionalization of pyridine is extremely important in synthetic chemistry. However, the direct functionalization of pyridine remains a significant challenge due to low reactivity and poor chemo- and regioselectivity of the aromatic ring.⁴ For instance, electrophilic substitution reaction of pyridine such as Friedel-Crafts and halogenation is not effective, in general. To utilize pyridine ring, we need to introduce substituent(s) on the ring^{δ} through some other reaction.⁶ As a good candidate for such a reaction, functionalization through the direct C-H bond activation of aromatic ring with transition metal catalyst has gained significant attention, recently.⁷ Murakami and co-workers⁸ successfully applied the C-H activation procedure to a novel regio- and stereoselective alkenylation reaction of pyridine using ruthenium catalyst. Bergman, Ellman, and co-workers⁹ also reported Rh(I)catalyzed alkenylation of pyridine at the C²-position. Instead of precious 4d metals, more abundant Ni was successfully applied to the direct arylation of pyridine and quinoline by Tobisu, Chatani, and co-workers.¹⁰ However, we still find harsh reaction conditions,¹¹ limited scope of substrate,¹² need of a directing group as substituent on the pyridine ring,¹³ and N-substituted oxide¹⁴ in many functionalization reactions. Further, it should be noted that the C²-H bond activation generally occurs due to the proximity effect of pyridine N atom which coordinates with metal as a Lewis base.¹⁵

In contrast to the C²-functionalization, the direct C³- and C⁴functionalizations of pyridine have been scarcely reported except for several pioneering works.^{16–22} For instance, Ong and coworkers¹⁷ and Nakao group¹⁸ first succeeded in the selective C⁴alkenylation using Ni(NHC)/Lewis acid cooperative catalyst (NHC = *N*,*N*-diphenyl *N*-heterocyclic carbene). They also reported direct evidence that a bimetallic η^2 - η^1 -pyridine nickel

Received: October 1, 2016 Published: December 14, 2016

Figure 1. Geometries and Gibbs energies by coordination of various molecules with Ni(NHC). The B3LYP-D3/BS-II method was used.

aluminum species is formed prior to the C–H bond activation.¹⁷ Yu and co-workers reported the selective C³-functionalization of pyridine by palladium catalyst.¹⁹ Stronger trans-influence of bipyridine ligand was suggested to be crucial for the selective C³functionalization. Shi and Li reported highly C³-selective iridiumcatalyzed addition reaction of aromatic aldehydes to pyridine in the presence of triethylsilane.²⁰ In this reaction, the oxidative addition of the C^3 -H bond of pyridine to a silyliridium species affords a hydride(3-pyridyl)(silyl)iridium species followed by reaction with aldehyde to form the C3-substituted product. Kanai, Matsunaga, and co-workers reported the direct C⁴alkenylation of pyridine by CoBr₂/LiBEt₃H catalyst.²¹ They suggested that the Et₃B species is crucial to improve the C⁴selectivity by suppressing reaction at the C²-site. Suginome and Ohmura reported the selective addition of silvl boronic ester to pyridine in the presence of a palladium catalyst to give N-boryl-4silyl-1,4-dihydropyridine in high yield.²² The first step is oxidative addition of silvlboronic ester to Pd(0), the next step is regioselective insertion of pyridine into the Pd-boryl bond, and the final step is reductive elimination of a silvlated dihydropyridine product.

Among various reports, the direct addition of alkenes and alkynes to pyridine with a nickel/Lewis acid cooperative catalyst reported by Nakao, Hiyama, and co-workers^{15,16,18} is considerably interesting because the selectivity can be controlled well by appropriate combination of ligand and Lewis acid (LA). For instance, (i) nickel/P(i-Pr)₃/Lewis acid (such as ZnMe₂ or AlMe₃) promotes the C^2 -alkenylation.¹⁵ (ii) The combination of nickel/NHC with AlMe₃ mainly allows the direct C⁴alkenylation, where the C³-alkenylated pyridine is produced as a minor product. (iii) The use of a very bulky (2,6-tBu₂-4-Me- $C_6H_2O_2AIMe$ (MAD) Lewis acid exclusively allows the C⁴functionalization. And (iv) the C²-functionalization occurs preferably in the absence of LA. In their studies, we found many interesting questions to be answered. The first question is the reaction mechanism of this direct functionalization reaction. Recently, Ni-catalyzed direct alkylation of benzene was reported by Eisenstein, Hartwig, and co-workers, in which direct H

transfer from benzene to alkene was proposed.²³ In Ni-catalyzed decyanative [4 + 2] cycloaddition in the presence of LA, on the other hand, the C–C σ -bond activation occurs via usual concerted oxidative addition to Ni(0) center.²⁴ Apart from these, various other possible mechanisms of the C–H bond activation or metal mediated H atom transfer reactions were nicely summarized by Hall et al.^{25a} and also by Ess and Goddard^{25b}. It is of considerable interest to investigate through which of the H transfer and the concerted oxidative addition mechanism pyridine C–H bond activation occurs. More important is to elucidate the roles of LA in controlling the regioselectivity. Theoretical answers to these questions are indispensable for achieving further development of this catalytic system.

In this theoretical study, we investigated regioselective alkenylation of pyridine catalyzed by Ni(0) complex combined with N,N-diphenyl N-heterocyclic carbene (NHC) as ligands and AlMe₃ as a Lewis acid. The effect of triisopropylphosphine $P(i-Pr)_3$ ligand was also explored. Our purposes here are to clarify the reaction mechanism of this alkenylation reaction, uncover the characteristic features of all elementary steps, elucidate the role of the Lewis acid (AlMe₃), and explain the reasons for experimentally observed regioselectivity.

COMPUTATIONAL DETAILS

Geometries of all species studied in this work were optimized by the DFT method with the B3PW91 functional.^{26,27} Basis set systems of two kinds, BS-I and BS-II, were used in this work. In BS-I, the 6-31G(d) basis set²⁸ was employed for H, C, N, P, and Al atoms and the LANL2DZ basis set was employed for Ni atom with effective core potentials (ECPs) for its core electrons.²⁹ In BS-I, one set of p-polarization function was added to a reactive H atom of pyridine which participates in the C–H bond activation. This BS-I was employed for geometry optimization and evaluation of vibrational frequencies. The vibrational frequencies were calculated to check whether the optimized geometry is an equilibrium structure or a transition state. In a better basis set system BS-II, a (311111/22111/411/1) basis set by the Stuttgart–Dresden–Bonn (SDD) group was employed for Ni with ECPs for the core electrons.³⁰ For H, C, N, P, and Al atoms, 6-311+G(d) basis sets were used, where

Figure 2. Geometrical changes in the C⁴-alkenylation of pyridine by the Ni(NHC)/AlMe₃ catalyst leading to the formation of *p*-vinyl pyridine–AlMe₃ **P1a**. Distances are given in angstroms, and angles are in degrees.

Figure 3. Gibbs energy changes (kcal mol⁻¹) in the C⁴-alkenylation of pyridine by the Ni(NHC)/AlMe₃ catalyst. The B3LYP-D3/BS-II method was used.

one set of p-polarization functions was added to a reactive hydrogen atom of pyridine.^{28a} The energy and population changes were calculated with the B3LYP-D3 functional^{31a} employing BS-II, where the geometries optimized by the DFT/BS-I were employed. We wish to mention that B3LYP-D3/BS-II//B3PW91/BS-I presents similar energy changes to those by B3LYP-D3/BS-II//B3LYP-D3/BS-I, and the use of the B3LYP-D3/BS-II//B3PW91/BS-I method is reasonable in a practical sense;^{31b} see page S24 in the Supporting Information. Also we checked the basis set effects to examine if the BS-II presents reliable results;^{31c} see page S25 in Supporting Information. The natural bond orbital (NBO) population analysis was made in order to investigate the population changes in reaction. All calculations were performed with the Gaussian 09 program package including NBO analysis version $3.1.^{32}$ The solvent effect of toluene was evaluated by the conductor-like polarizable continuum model (CPCM).^{33a-c} Thermal corrections and entropy contributions of vibrational movements to the Gibbs energy change were evaluated at the B3PW91/BS-I level at 383.15 K and 1 atm, where the solvation effect was evaluated with the CPCM model. The Gibbs energy was used for the discussion, where the translational entropy was corrected with the method developed by Whitesides et al.^{33d} The reaction temperature was set to 383.15 K to mimic the experimental conditions.

Scheme 1. Catalytic Cycle for Alkenylation of Pyridine by the Ni(NHC)/AlMe₃ Catalyst, Leading to the Formations of Vinyl Pyridine-AlMe₃ P1 and Butadienyl Pyridine-AlMe₃ P2

292

RESULTS AND DISCUSSION

Before starting theoretical study of the reaction mechanism, we first elucidated what an active species is. Considering that NHC is a strong ligand, we investigated here various complexes of Ni(NHC) with pyridine, pyridine–AlMe₃, and acetylene. Their optimized geometries are shown in Figure 1 with Gibbs energies. As can be seen in Figure 1, pyridine-AlMe₃ coordination with the Ni(0) atom is moderately more stable than pyridine coordination by about 2 to 5 kcal mol⁻¹. Among all the complexes examined, the acetylene complex $Ni(NHC)(C_2H_2)$ 1 is substantially more stable than the pyridine (by ~ 10 kcal mol^{-1}) and pyridine-AlMe₃ (by ~8 kcal mol^{-1}) complexes. These results suggest that the reaction starts from 1.

Catalytic Cycle for C⁴-Alkenylation of Pyridine with Ni(NHC)/AlMe₃ Catalyst: Geometry and Energy Changes. Figures 2 and 3 present geometry and energy changes in the C⁴alkenylation by Ni(NHC)/AlMe₃, respectively. It is likely that the first step of the catalytic cycle is coordination of the pyridine-AlMe₃ adduct with the active species 1 to form an intermediate $Ni(NHC)(C_{2}H_{2})(C_{3}NH_{3}AlMe_{3})$ Intla; see Scheme 1. The stabilization energy of Int1a is -15.8 kcal mol⁻¹ (Figure 3). In Intla, one C–C bond of pyridine ring interacts with the Ni atom in an η^2 -fashion. The Ni-C³ and Ni-C⁴ distances are similar (2.174 and 2.109 Å, respectively), and the $\mathrm{C^4-H}$ bond moderately deviates from the pyridine plane, while its C⁴-H

bond distance (1.082 Å) is similar to the other C-H bond distances. Int1a isomerizes to Int2a via transition state TS1a. In Int2a, the C⁴–H bond coordinates with the Ni atom, where the C^4 -H bond is somewhat elongated and the Ni- C^4 bond is substantially elongated to 1.114 and 2.326 Å, respectively. The Gibbs activation energy ($\Delta G^{\circ \ddagger}$) of this process is moderate (6.2 kcal mol⁻¹ relative to Int1a), indicating that this process easily occurs. Starting from Int2a, the C⁴-H bond activation occurs through a transition state TS2a to afford a nickel vinyl pyridyl intermediate, Ni(NHC)(CHCH₂)(C₅NH₄AlMe₃) Int3a. TS2a is not a usual transition state of concerted oxidative addition but seems to be a transition state for H¹-transfer from pyridine-AlMe₃ to acetylene. Though the short Ni-H¹ (1.464 Å) and Ni- C^4 (1.938 Å) distances and the considerably long C^4 –H distance (1.608 Å) are similar to those of the transition state of the concerted oxidative addition, the rather short C⁵-H distance (1.729 Å) suggests that the H¹ atom starts to interact with the C⁵ atom of acetylene. The $\Delta G^{\circ \ddagger}$ value is 17.4 kcal mol⁻¹ relative to Int1a and 11.4 kcal mol^{-1} relative to Int2a (Figure 3). The intermediate Int3a is moderately more stable than Int2a by 1.0 kcal mol⁻¹. In **Int3a**, the C⁵–H distance (1.144 Å) is longer than the other C-H bond and the Ni-H distance (1.836 Å) is short, suggesting the presence of agostic interaction between the $C^{5}-H$ bond and the Ni atom. On the other hand, Ni– C^1 (1.826 Å) and Ni-C⁴ (1.920 Å) distances are similar to the normal Ni-C bond distance. These geometrical features indicate that Int3a is a

Article

Figure 4. Geometrical changes in the C⁴-alkenylation of pyridine by the Ni(NHC)/AlMe₃ catalyst leading to the formation of *p*-butadienyl pyridine–AlMe₃ P2a. Distances are given in angstroms, and angles are in degrees.

Ni(II) complex containing vinyl and pyridyl groups. Because the Ni oxidation state increases from 0 to II when going from Int1a to Int3a, this process is understood to be the oxidative addition of the pyridine C–H bond to a nickel–acetylene moiety,³⁴ which is different from the concerted oxidative addition of the C–H bond to a Ni(0) center.

The next step is coordination of one more acetylene to the Ni atom in Int3a to afford a nickel(II) acetylene complex $Ni(NHC)(CHCH_2)(C_5H_4NAlMe_3)(C_2H_2)$ Int4a; see Scheme 1 and Figure 2. This is called the second acetylene coordination hereafter. This acetylene coordination is exergonic by -12.7 kcal mol^{-1} . Thus-formed intermediate Int4a undergoes the C⁴-C⁶ bond formation through reductive elimination. As seen in Figure 3, TS3a of this reaction is moderately less stable than Int4a by 4.8 kcal mol⁻¹. In **TS3a**, the C⁴–C⁶ bond distance becomes shorter (2.001 Å) but the Ni–C⁴ and Ni–C⁶ bond distances increase little, indicating that the C⁴–C⁶ bond formation is in progress in TS3a without the Ni $-C^4$ and Ni $-C^6$ bond weakening. From TS3a, the para-substituted vinyl-pyridine-AlMe₃ P1a is produced with the regeneration of active species 1.³⁵ The total Gibbs activation energy $(\Delta G^{\circ \ddagger})$ and reaction energy (ΔG°) for the formation of P1a are 17.4 kcal mol^{-1} and -33.5 kcal mol^{-1} , respectively.

Another possible reaction is the C^6-C^8 bond formation starting from Int4a, which corresponds to acetylene insertion into the Ni-vinyl bond. This reaction occurs via a transition state TS4a to form a nickel(II) butadienyl intermediate Ni(NHC)- $(C_4H_5)(C_5H_4NAlMe_3)$ Int5a (Scheme 1 and Figure 4). In TS4a, the $C^6 - C^8$ distance considerably decreases, while the Ni-C⁶ (1.935 Å) and the Ni–C⁸ (2.006 Å) distances marginally change from those in Int4a. These geometry changes suggest that the $C^{6}-C^{8}$ bond formation is in progress in **TS4a** with keeping the Ni–C⁶ and Ni–C⁸ bonds. The $\Delta G^{\circ \ddagger}$ value (2.1 kcal mol⁻¹) is small, indicating that the $C^6 - C^8$ bond formation occurs easily to afford nickel(0) butadienyl pyridyl complex Int5a, which is much more stable than Int4a by 25.1 kcal mol⁻¹. In Int5a, the C^6-C^8 bond (1.340 Å) is completely formed. This Int5a is essentially the same as Int3a with only one difference, that Int5a has one butadienyl group but Int3a has one vinyl group. Thus, Int5a undergoes one more acetylene coordination, which is named as

the third acetylene coordination hereafter, to afford nickel(II) butadienyl pyridyl acetylene intermediate Ni(NHC)(C4H5)- $(C_5H_4NAlMe_3)(C_2H_2)$ Int6a. This coordination occurs with considerably large stabilization energy of -12.6 kcal mol⁻¹. The next step is the C^4-C^7 bond formation by the reductive elimination, which occurs via a transition state **TS5a** ($\Delta G^{\circ \ddagger} = 4.2$ kcal mol-1) to afford a para-substituted butadienyl-pyridine-AlMe₃ P2a with the regeneration of active species $1.^{36}$ The ratedetermining step is the C⁴-H bond activation in this catalytic cycle, too. The Gibbs reaction energy for the formation of P2a is -72.5 kcal mol⁻¹. These computational results leads to the conclusion that **P2a** is a major product because the $\Delta G^{\circ \ddagger}$ value for the $C^6 - C^8$ bond formation via alkyne insertion is smaller than that of the C^4-C^6 bond formation via reductive elimination of P1a. This conclusion is not consistent with the experimental fact that P1a is a major product. We will explain below the reason for this discrepancy and explain the conditions necessary for the formation of P1a.

Geometry and Energy Changes in the C^{2} - and C^{3} -Alkenylation of Pyridine with Ni(NHC)/AlMe₃ Catalyst. The C²- and C³-alkenylations occur in a similar manner to that of the C^4 -alkenylation; Figures S1 to S6 show geometry and energy changes. Hence, important differences from those of the C⁴alkenylation are discussed here; the labels **a**, **b**, and **c** will be used for the C⁴-, C³-, and C²-alkenylations, respectively, to avoid confusion. The oxidative addition of the C-H bond is the ratedetermining step in all three alkenylations (Figures S3 and S6). The transition states TS2b and TS2c are similar to TS2a, where the H¹ atom directly migrates from pyridine to acetylene. The $\Delta G^{\circ \ddagger}$ value (22.0 kcal mol⁻¹) for the C²-H bond activation is much larger than those of the C^3 -H (21.5 kcal mol⁻¹) and C^4 -H bond (17.4 kcal mol⁻¹) activations, indicating that the C²substituted pyridine is not produced well and the C³-substituted pyridine is less produced than the C⁴ one. The reasons will be discussed below. After the C-H bond activation, two kinds of C–C bond formation are possible; one is the C^2-C^6 and C^3-C^6 bond formations via the reductive elimination to afford vinylsubstituted pyridine-AlMe₃ P1. Another is the second acetylene insertion into the Ni-vinyl bond (C^6-C^8 bond formation) followed by the C^2-C^7 , C^3-C^7 , and C^4-C^7 bond formations via

Table 1. Gibbs Energy Changes (ΔG° in kcal mol ⁻¹) ^{<i>a</i>} for Oxidative Addition of C ^{<i>n</i>} -H (<i>n</i> = 2, 3, and 4) Bond, the C ^{<i>n</i>} -C ⁶ an	d C ⁶ –
C^8 Bond Formations, and the Second Acetylene Coordination in the Ni(NHC)/AlMe ₃ -Catalyzed Reaction	

	Gibbs energy ΔG°						
C ⁿ -alkenylation	C ⁿ –H bond activation	2nd acetylene coordination ^b	reductive elimination of P1	acetylene insertion into Ni—vinyl bond	3rd acetylene coordination ^c	reductive elimination of P2	ΔG° P1 (P2)
Acetylene, $HC \equiv CH$							
C ⁴ -alkenylation	17.4	-12.7	4.8	2.1	-12.6	4.2	-33.5 (-72.5)
C ³ -alkenylation	21.5	-9.9	7.9	3.4	-14.8	5.9	-34.9 (-69.6)
C ² -alkenylation	22.0	-6.2	4.5	3.4	-4.6	2.4	-31.7 (-86.5)
			1,2-Dimethyl	Acetylene, MeC≡CMe			
C ⁴ -alkenylation	16.7	-5.1	6.8	5.3	8.4	6.2	-24.2 (-43.8)
C ³ -alkenylation	17.9	-4.4	8.0	3.7	8.3	10.4	-22.7 (-43.2)
C ² -alkenylation	21.5	-2.5	11.4	3.3	7.0	18.3	-19.3 (-39.9)
1,2-Diisopropyl Acetylene, 'PrC≡C'Pr							
C ⁴ -alkenylation	17.6	-3.0	7.0	9.5	21.1	_d	-23.4 (-34.9)
C ³ -alkenylation	19.0	-3.9	4.3	8.2	23.0	_d	-22.3 (-35.2)
C ² -alkenylation	22.5	9.1	10.3	8.3	16.7	_d	-16.5 (-31.6)

^aThe B3LYP-D3/BS-II method was employed. ^bThe second acetylene coordination with **Int3** leads to the formation of **Int4**. See Scheme 1 for details. ^cThe third acetylene coordination with **Int5** leads to the formation of **Int6**. See Scheme 1 for details. ^dNo reaction occurs.

Figure 5. Geometrical changes in the C^4 -alkenylation of pyridine by the Ni(NHC) catalyst in the absence of AlMe₃, leading to the formation of vinyl pyridine P3a. Distances are given in angstroms, and angles are in degrees.

reductive elimination to afford but adienyl-substituted pyridine–AlMe₃ **P2**. Both of these C–C bond formation reactions occur easily with small $\Delta G^{\circ \dagger}$ value (Table 1). Based on these results, it is concluded that the C⁴-alkenylation occurs more easily than the C³-alkenylation, which is consistent with the experimental report that the C⁴-substituted pyridine–AlMe₃ is a major (53% yield) product, the C³-substituted pyridine–AlMe₃ is a minor (15% yield) product, and the C²-substituted pyridine–AlMe₃ is not produced.

Substituent Effects of Acetylene on the C^{*n*}-Alkenylation (n = 2, 3, and 4) of Pyridine with Ni(NHC)/AlMe₃ **Catalyst.** We investigated here the reactions of dimethylacetylene and diisopropylacetylene to elucidate the substituent effects of acetylene moiety on the alkenylation reaction. As seen in Table 1, the $\Delta G^{\circ \ddagger}$ value for the oxidative addition of the C–H bond (TS2) is similar between the substituted and nonsubstituted acetylenes, as expected. The $\Delta G^{\circ \dagger}$ values for TS3 (the reductive elimination of P1 via the C⁴-C⁶ bond formation.) and TS4 (the second acetylene insertion into the Ni-vinyl bond via the C⁶-C⁸ bond formation) increase in the order acetylene < dimethyl acetylene \ll diisopropyl acetylene (Table 1). In the C²-alkenylation, these $\Delta G^{\circ \ddagger}$ values increase more than the C³ and C⁴ ones. One more important result in the real substrate (1,2-diisopropylacetylene) is that, in C⁴-alkenylation, the $\Delta G^{\circ \ddagger}$ value for the second acetylene insertion into the Ni-vinyl bond (TS4) becomes larger than that of the reductive elimination (TS3) of vinyl pyridine P1, indicating that, in the case of the real substrate, butadienyl-pyridine-AlMe₃ P2a cannot be produced but vinyl pyridine-AlMe₃ P1a is produced. These computational results

The Journal of Organic Chemistry

Article

Figure 6. Gibbs energy changes (kcal mol^{-1}) in the C⁴-alkenylation of pyridine by the Ni(NHC) catalyst in the absence of AlMe₃. The B3LYP-D3/BS-II method was used.

Table 2. Gibbs Energy Changes $(\Delta G^{\circ} \text{ in kcal mol}^{-1})^{a}$ for Oxidative Addition of C^{n} -H (n = 2, 3, and 4) Bond, the C^{n} -C⁶ and C⁶-C⁸ Bond Formations, and the Second Acetylene Coordination in the Ni(NHC)-Catalyzed Reaction without AlMe₃

Gibbs Energy ΔG°							
C ⁿ -alkenylation	C ⁿ -H bond activation	2nd acetylene coordination	reductive elimination of P3	acetylene insertion into Ni—vinyl bond	3rd acetylene coordination	reductive elimination of P4	ΔG° P3 (P4)
Acetylene, $HC \equiv CH$							
C ⁴ -alkenylation	26.5	-12.5	6.9	3.7	-16.0	5.4	-33.7 (-70.5)
C ³ -alkenylation	28.2	-8.6	6.1	3.1	-10.0	5.6	-33.1 (-69.9)
C ² -alkenylation	27.7	-10.5	4.8	2.8	-3.8	1.3	-34.0 (-70.7)
			1,2-Diisoprop	yl Acetylene, ⁱ PrC≡C ⁱ Pr			
C ⁴ -alkenylation	26.3	1.2	4.5	4.4	6.4	15.4	-21.0 (-32.9)
C ³ -alkenylation	26.6	1.2	10.1	7.1	14.4	9.8	-20.2 (-32.3)
C ² -alkenylation	27.1	-2.0	5.1	9.6	7.0	11.4	-21.7 (-32.6)
^{<i>a</i>} The B3LYP-D3	/BS-II method	was employed.					

of the real substrates agree with the experimental ones that the C^4 -substituted vinyl pyridine product **P1a** is a major product.

Catalytic Cycle for Cⁿ-Alkenylation (n = 2, 3, and 4) of Pyridine with Ni(NHC) Catalyst in the Absence of AlMe₃: Geometry and Energy Changes. The C⁴-alkenylation of pyridine in the absence of AlMe₃ occurs with geometrical changes shown by Figures 5 and S7. The first step is pyridine coordination with the Ni atom through the N atom, leading to the formation of nickel(0) pyridine acetylene intermediate $Ni(NHC)(C_5H_5N)(C_2H_2)$ Int7a. This intermediate is substantially more stable than 1 by -19.5 kcal mol⁻¹, as shown in Figure 6. Int7a isomerizes to a less stable intermediate Int10a through several intermediates and transition states, where Int7a, Int8a, and Int9a correspond to rotational isomers of pyridine around the Ni-N bond. In Int10a, the C⁴-H bond is moderately elongated to 1.112 Å and the Ni-H distance is rather short (1.899 Å), suggesting that Int10a is an intermediate leading to the C⁴-H bond activation. The C⁴-H bond activation occurs through a transition state TS9a to afford an intermediate Intl1a. The geometry of TS9a (Figure 5) is similar to that of TS2a (Figure 2), while the Ni-H distance (1.488 Å) is slightly longer and the C⁴-H (1.566 Å) and C⁵-H (1.605 Å) distances are considerably shorter in TS9a than in TS2a. These geometrical features suggest that TS9a is more congested than TS2a. The $\Delta G^{\circ \ddagger}$ value is 26.5 kcal mol⁻¹ relative to Int7a and 16.5 kcal mol⁻¹ relative to Int10a; see Figure 6 and Table 2. It should be noted that these $\Delta G^{\circ \ddagger}$ values are larger than those in the presence of AlMe₃ (Figure 3), the reason for which will be discussed below. The next step is $C^4 - C^6$, $C^6 - C^8$, or $C^4 - C^7$ bond

formation which occurs in a similar manner to those in the presence of AlMe₃. The $\Delta G^{o^{\ddagger}}$ value of this step is small, indicating that this step occurs easily.

The C³- and C²-alkenylations in the absence of AlMe₃ occur similarly to the C⁴-alkenylation; see Figures S8 to S10 and Figures S11 to S13 for the C³- and C²-alkenylations, respectively. The pyridine rotation around the Ni–N bond occurs one time in the C³-alkenylation to afford Int10b through Int8b. In the C²alkenylation, Int7c is directly converted to Int10c without pyridine rotation. After Int10b and Int10c, the C³- and C²alkenylations occur with similar $\Delta G^{o^{\ddagger}}$ values to that of the C⁴alkenylation. Because the $\Delta G^{o^{\ddagger}}$ values of all these three C–H bond activations are considerably larger than those of the C⁴-C⁶, C⁶-C⁸, and the C⁴-C⁷ bond formations, as shown in Table 2, the C–H bond activation is rate-determining. As mentioned above, these $\Delta G^{o^{\ddagger}}$ values are considerably larger than those in the presence of AlMe₃ (Table 1).

This result leads to a clear explanation of the reason why AlMe₃ equimolar to Ni(0) (i.e., much less than substrate) is enough for the C⁴-alkenylation, as follows: Because AlMe₃ concentration is much less than the pyridine one, both pyridine and pyridine–AlMe₃ adduct are involved in the catalytic reaction. Pyridine more strongly coordinates with Ni(NHC), but the C– H bond activation needs a much larger $\Delta G^{\circ \dagger}$ value. This means that pyridine forms a more stable adduct Ni(NHC)(pyridine)-(acetylene) but it is not reactive. On the other hand, the concentration of pyridine–AlMe₃ adduct is small but its adduct with Ni(NHC) is reactive. Important is the energy of the highest transition state in the catalytic cycle. In the absence of AlMe₃,

Figure 7. Changes in the NBO population in the oxidative addition of the C⁴–H bond by (A) Ni(NHC)/AlMe₃ and (B) Ni(NHC) in the absence of AlMe₃, and (C) Ni(P(*i*-Pr)₃)/AlMe₃ catalyst. The B3LYP/BS-II method was used.

Scheme 2. Exchange Repulsion between the σ_{C-H} Bonding (or Antibonding) Orbitals of Pyridine and π Orbital of Acetylene

TS9a is the highest energy transition state (7.0 kcal mol⁻¹; see Figure 6), whereas in the presence of AlMe₃, **TS2a** is the highest energy transition state (1.6 kcal mol⁻¹; see Figure 3). These results clearly indicate that the reaction via **TS2a** much easily occurs than that via **TS9a**.

We will briefly discuss here the reaction of substituted acetylene in the absence of AlMe₃ (Table 2). The C–H bond activation is influenced little by the substituents of acetylene, as expected. The $\Delta G^{\circ \ddagger}$ values for other steps are small. These results indicate that the alkenylation reactions with the real acetylene are difficult in the absence of AlMe₃, too.

Electronic Processes in C^n -Alkenylation (n = 2, 3, and 4) of Pyridine with and without AlMe₃. To understand the electronic process, we investigated changes in NBO population by the C–H bond activation, because it is a rate-determining step. When going from reactants to **TS2a**, the electron population of the NHC ligand substantially decreases and that of acetylene moderately increases at **Int2a** but then somewhat decreases, as shown in Figure 7A. On the other hand, the electron populations of Ni and pyridine considerably increase. The increase in the Ni atomic population mainly arises from the increases in the s and p orbital populations, while the d orbital population moderately decreases. These population changes lead to the following understanding of electronic processes: The electron population of acetylene increases in Int2a by the π -backdonation from Ni to acetylene, but the π -back-donation becomes weaker as going from Int2a to TS2a. Though this weakening of π -back-donation should increase the Ni d orbital population, the d orbital population decreases because charge transfer (CT) occurs from the Ni d orbital to pyridine, as often found in the usual oxidative addition reaction.^{34,37} Actually, the electron population of pyridine increases in TS2a, as was seen above. However, the H atomic population changes little unexpectedly, when going from Int2a to TS2a, unlike in the concerted oxidative addition.^{34,37} This unexpected result in the H atomic population is one of the characteristic features of this C-H Scheme 3. ONIOM Procedure for the Evaluation of Steric Repulsion

activation reaction: The CT from Ni d MO to the C-H σ^* MO is necessary to induce the C-H bond weakening which increases in the H atomic population. However, the exchange repulsion of the C-H σ MO with the π MO of acetylene is simultaneously induced because the H atom is approaching the acetylene. Because the phase of H 1s orbital is different between the bonding and antibonding overlaps, the H atomic population decreases in **TS2a**, as schematically shown in Scheme 2. This exchange repulsion does not occur in the usual concerted oxidative additions.

As going from TS2a to Int3a, the electron population of the NHC further decreases. Also, the Ni atomic population starts to decrease substantially, in which all s, p, and d orbital populations decrease. On the other hand, the electron populations of the acetylene and pyridine moieties considerably increase. These population changes suggest that the acetylene and pyridine moieties are converted to an anionic vinyl group and an anionic pyridyl group, respectively, which are consistent with the understanding that this is the oxidative addition of the C–H bond to the Ni–acetylene moiety.³⁴ In the C²- and C³- alkenylation reactions, essentially the same population changes are observed; see Figures S14A and S15A and Tables S1 to S3.

In the C⁴-alkenylation by Ni(NHC) in the absence of AlMe₃, the NBO population changes occur in a different manner from those by Ni(NHC)/AlMe₃, as compared in Figures 7A and 7B. In **TS2a**, the electron population of the pyridine–AlMe₃ moiety more increases (0.107e) than in **TS9a** (0.056e) without AlMe₃. This result suggests that the CT from the Ni d orbital to pyridine occurs more in the presence of AlMe₃ than in the absence of AlMe₃. Because AlMe₃ is a Lewis acid, it stabilizes the π^* MO of pyridine to enhance the CT from Ni(NHC). This is one reason why the C–H bond activation occurs with smaller $\Delta G^{\circ \ddagger}$ value by the presence of AlMe₃. The population changes when going from TS9a to Int11a occur in a similar manner to those in the reaction with AlMe₃, indicating that AlMe₃ influences only the C-H bond activation. In the C²- and C³-alkenylation reactions without AlMe₃, the population changes occur in essentially the same manner as those in the C⁴-alkenylation reaction without AlMe₃; see Figures S14B and S15B and Tables S4-S6, respectively. We will skip the discussion of these reactions.

Selectivity of the C⁴- and C³-Alkenylations over the C²-Alkenylation of Pyridine by Ni(NHC)/AlMe₃ Catalyst. In order to find the reason for selectivity of the C⁴- and C³alkenylations over the C²-alkenylation of pyridine by the Ni(NHC)/AlMe₃ catalyst, we inspected two factors: (i) the steric repulsion between AlMe₃ and *N*,*N*-diphenyl NHC ligand and (ii) the CT interaction in the transition state of the C–H bond activation.

For the evaluation of the steric repulsion, we employed the ONIOM procedure (Scheme 3). The total energy of the real system is approximately represented by eq 1.

$$E_{\rm RC} = E_{\rm MC} + E_{\rm RS} - E_{\rm MS} \tag{1}$$

Article

where subscripts RC, MC, RS, and MS represent a real complex, a model complex, real substituents, and model substituents, respectively (Scheme 3). To check the reliability of eq 1, we calculated the activation barrier (ΔE^{\ddagger}) of the C–H bond activation, where only electronic energy was considered.³⁸ The ΔE^{\ddagger} value is represented by eq 2. The calculated value agrees

Table 3. Activation Energies $\Delta E^{\ddagger a}$ (in kcal mol⁻¹) Calculated for Real Complex and Model Complex and the Steric Repulsion ΔE_{SR}^{\ddagger} (in kcal mol⁻¹) in the Transition State of the C^n -H (n = 2, 3, and 4) Bond Activation Calculated at the B3LYP-D3 Level

		ΔE^{\ddagger}						
C ⁿ -alkenylation	real complex	model complex	ONIOM	$\Delta E_{\rm SR}^{\ddagger}$				
N,N-Diphenyl NHC Ligand ^b								
C ⁴ -alkenylation	23.62	22.89	24.55	1.66				
C ³ -alkenylation	23.91	23.77	25.64	1.86				
C ² -alkenylation	24.16	21.49	26.84	5.35				
	P(<i>i</i> -Pı	r) ₃ Ligand ^e						
C ⁴ -alkenylation	18.71	20.13	22.20	2.07				
C ³ -alkenylation	19.82	21.00	23.01	2.02				
C ² -alkenylation	16.05	15.89	17.27	1.38				
2001 1		.1 1 0	C 20 C 1	ba				

"The electronic energies were considered. See ref 38 for details. "See Scheme 3. "See Scheme S1.

with that of the real system in all three alkenylations (Table 3), suggesting that this procedure is useful for making analysis.

$$\Delta E^{\ddagger} = E_{\rm RC\,at\,TS2} - E_{\rm RC\,at\,Int1} = \Delta E_{\rm MC}^{\ddagger} + \Delta E_{\rm RS} - \Delta E_{\rm MS}$$
(2)

$$\Delta E_{\rm MC}^{\mp} = E_{\rm MC\,at\,TS2} - E_{\rm MC\,at\,Int1} \tag{3a}$$

$$\Delta E_{\rm SR}^{\ddagger} = \Delta E_{\rm RS} - \Delta E_{\rm MS} = (E_{\rm RS} - E_{\rm MS})_{\rm at \, TS2} - (E_{\rm RS} - E_{\rm MS})_{\rm Int1}$$
(3b)

The ΔE_{MC}^{\ddagger} (eq 3a) corresponds to the activation energy of the model system without bulky substituent. The difference in the ΔE_{MC}^{\ddagger} between the presence and absence of AlMe₃ represents the electronic effect of AlMe₃; see Table S7. The difference between the real (ΔE_{RS}) and model substituents (ΔE_{MS}) corresponds to the effect of steric repulsion (ΔE_{SR}^{\ddagger} in eq 3b). In the real complex, the ΔE^{\ddagger} value in the C⁴-alkenylation is smaller than those in the C³- and C²-alkenylations by 0.29 kcal mol⁻¹ and 0.54 kcal mol⁻¹, respectively (Table 3). In the model complex, the ΔE_{MC}^{\ddagger} value in the C⁴-alkenylation is smaller than in the C³-alkenylation by 0.88 kcal mol⁻¹ but larger than in the C²-alkenylations by 1.40 kcal

Table 4. Gibbs Energy Changes $(\Delta G^{\circ} \text{ in kcal mol}^{-1})^{\alpha}$ for Oxidative Addition of C^{n} -H (n = 2, 3, and 4) Bond, the C^{n} -C ^o and C ^o	—
C^{8} Bond Formations, and the Second Acetylene Coordination in the Ni $(P(i-Pr)_{3})/AlMe_{3}$ -Catalyzed Reaction	

Gibbs energy ΔG°							
C ⁿ -alkenylation	C ⁿ -H bond activation	2nd acetylene coordination ^b	reductive elimination of P1 ′	acetylene insertion into Ni—vinyl bond	3rd acetylene coordination ^c	eductive elimination of P2 ′	$\Delta G^{\circ} \mathbf{P1}' (\mathbf{P2}')$
Acetylene, $HC \equiv CH$							
C ⁴ -alkenylation	13.0	3.1	3.1	4.1	-3.3	3.4	-33.5 (-72.5)
C ³ -alkenylation	14.8	-1.0	5.2	4.1	-0.7	4.3	-34.9 (-69.6)
C ² -alkenylation	12.6	-2.4	7.0	4.8	-7.5	10.2	-31.7 (-86.5)
			1,2-Dimethyl	Acetylene, MeC≡CMe			
C ⁴ -alkenylation	14.4	0.4	2.7	13.9	-8.6	8.7	-24.2 (-43.8)
C ³ -alkenylation	15.4	-1.0	7.8	12.7	-6.4	11.1	-22.7 (-43.2)
C ² -alkenylation	13.3	0.7	9.8	5.9	-1.1	10.6	-19.3 (-39.9)
1,2-Diisopropyl Acetylene, ${}^{i}PrC \equiv C'Pr$							
C ⁴ -alkenylation	14.1	3.4	9.3	6.7	2.4	9.9	-23.4 (-34.9)
C ³ -alkenylation	15.2	2.4	4.9	9.1	-0.4	12.5	-22.4 (-35.2)
C ² -alkenylation	14.8 ^d	3.9	14.1	12.2	9.5 ^e	13.3	-16.5 (-31.6)

^{*a*}The B3LYP-D3/BS-II method was employed. ^{*b*}The second acetylene coordination with Int3' leads to the formation of Int4'. See Scheme 1 for details. ^{*c*}The third acetylene coordination with Int5' leads to the formation of Int6'. See Scheme 1 for details. ^{*d*}See Tables S10 and discussion on page S37 of the Supporting Information. ^{*e*}See Table S11 on page S38 of the Supporting Information.

mol⁻¹, indicating that the electronic factor is not responsible for the small C²-selectivity. On the other hand, the ΔE_{SR}^{\ddagger} is very large in the C²-alkenylation and decreases in the order C²- \gg C³- > C⁴alkenylation, indicating that the steric repulsion between the *N*,*N*-diphenyl NHC ligand and AlMe₃ is the largest in the C²alkenylation and becomes small in both the C³- and C⁴alkenylations. In other words, AlMe₃ induces large steric repulsion with *N*,*N*-diphenyl NHC ligand in the C²-alkenylation. This steric repulsion mainly determines the regioselectivity of C²-, C³-, and C⁴-alkenylations.

We investigated here the electronic factor in more detail. In TS2, the electron population of the pyridine-AlMe₃ moiety decreases in the order C^2 - $(0.131e) \ge C^4$ - $(0.124e) \gg C^3$ alkenylation (0.095e), where in parentheses is the increase in the population going from Int2a to TS2a. On the other hand, the Ni d orbital population decreases more in the C^2 - (-0.033e) than in the C^3 -alkenylation (-0.026*e*), and it decreases the least in the C⁴-alkenylation (-0.017e); see Tables S1 to S3. These population changes in pyridine-AlMe3 and Ni d orbital suggest that the CT (ML \rightarrow pyridine–AlMe₃) is substantially larger in the C²- and C⁴-alkenylations than in the C³-alkenylation. The larger CT interaction stabilizes TS2 of the C2- and C4alkenylations compared to that of the C3-alkenylation. These results indicate that the electronic effect is favorable for the C²and C⁴-alkenylations; in other words, the selectivity of the C⁴alkenylation over the C³-alkenylation arises from the electronic effect.

In summary, it is concluded that both electronic and steric factors contribute to the larger C^4 -selectivity over the C^3 and C^2 ones in pyridine alkenylation by the Ni(NHC)/AlMe₃ catalyst.

Reasons Why AlMe₃ Accelerates Alkenylation of Pyridine. As discussed above, the important difference between the alkenylation reaction with and without AlMe₃ arises from the difference in the initial intermediate complex. In the absence of AlMe₃, the N atom of pyridine coordinates with the Ni atom to form **Int7** in the first step. This coordination is not possible in the presence of AlMe₃ because AlMe₃ strongly interacts with pyridine through the N atom. Thus, the C–C bond of pyridine–AlMe₃ coordinates with Ni atom in an η^2 -fashion to form **Int1. Int7** is more stable than **Int1** by 4 kcal mol⁻¹ (Figures 3 and 6). The stabilization of **Int7** increases the Gibbs activation energy. This is one of the reasons why the alkenylation reaction is difficult in the absence of AlMe₃.

Another reason is found in the CT interaction at the transition state of the C–H bond activation. As going from Int2 to TS2, the electron population of the pyridine moiety increases (by 0.130e in the C²-, 0.083e in the C³-, and 0.107e in the C⁴-alkenylations) more in TS2 with AlMe₃ than in TS9 without AlMe₃ (0.057e in the C²-, 0.044e in the C³-, and 0.056e, in the C⁴-alkenylations). These results indicate that the CT(Ni(NHC) \rightarrow pyridine–AlMe₃) is larger than the CT(Ni(NHC) \rightarrow pyridine). This enhancement of the CT interaction by AlMe₃ more stabilizes TS2 than TS9. It is noted that the enhancement of CT interaction is the largest in the C⁴-alkenylation but the least in the C³ one. Based on these results, another important reason is the enhancement of CT by AlMe₃. This is not surprising because CT occurs from pyridine to AlMe₃ to stabilize the π^* orbital and to enhance the CT from the Ni to pyridine.

Effects of Triisopropylphosphine P(*i*-Pr)₃ on Reactivity and Regioselectivity of the Cⁿ-Alkenylation in the Presence of AlMe₃. In another experimental work by Hiyama and Nakao,¹⁵ the C²-alkenylation succeeded by employing $Ni(P(i-Pr)_3)$ with either AlMe₃ or ZnMe₂ as LA. In this reaction, vinyl- and butadienyl-pyridine were produced selectively by employing appropriate Lewis acid; for instance, when Ni(P(i-Pr)₃)/AlMe₃ was employed, C²-substituted butadienyl pyridine was produced as a major product unlike in the Ni(NHC)/AlMe₃catalyzed reaction. It is interesting to explore the reasons why the C²-butadienyl pyridine is produced as a main product when $Ni(P(i-Pr)_3)/AlMe_3$ catalyst is employed, because such product is not produced in the reaction by the $Ni(NHC)/AlMe_3$ catalyst. The geometry and energy changes for the C⁴-alkenylations are shown in Figures S16 to S18, and those for the C^{3} - and C^{2} alkenylations are in Figures S19 to S24. These geometry changes are similar to those by the Ni(NHC)/AlMe₃ catalyst, and hence the discussion of the geometry changes is skipped here. As seen in Table 4, the $\Delta G^{\circ \ddagger}$ values for the C–H bond activation by the $Ni(P(i-Pr)_3)/AlMe_3$ catalyst are much smaller in all three alkenylations than those by the Ni(NHC)/AlMe₃ catalyst, though the $\Delta G^{\circ \ddagger}$ values for the second acetylene insertion and

The Journal of Organic Chemistry

the C–C bond reductive elimination are similar to or marginally larger than those by the Ni(NHC)/AlMe₃ catalyst. Because these $\Delta G^{\circ \ddagger}$ values are smaller than that of the C–H bond activation, the C–H bond activation is rate-determining. Therefore, it is concluded that the alkenylation of pyridine occurs much more easily when P(*i*-Pr)₃ ligand was employed instead of *N*,*N*diphenyl-NHC ligand.

One important result in Table 4 is that the $\Delta G^{\circ \ddagger}$ value is the smallest in the C²-alkenvlation (12.6 kcal mol⁻¹) by the Ni(P(i- $Pr)_{3}$ /AlMe₃ catalyst indicating that the C²-alkenylation occurs more favorably than the C^{3} - and C^{4} -alkenylations, when the $Ni(P(i-Pr)_3)/AlMe_3$ catalyst was used. These results agree with the experimental fact that the C²-alkenylation occurs by the $Ni(P(i-Pr)_3)/AlMe_3$ catalyst. Another important difference is that the butadienyl pyridine is produced as a main product. To yield such product, the second acetylene coordinates easily with Int3a' to afford Int4a'. After Int4a', the acetylene insertion (TS4') into the Ni-vinyl bond must more easily occur than the C-C reductive elimination (TS3') of the vinyl group. As seen in Table 4, the $\Delta G^{\circ \ddagger}$ value for the reductive elimination of vinyl group is larger than that of the acetylene insertion into the Nivinyl bond in the C²-alkenylation for both unsubstituted and substituted acetylenes. Therefore, the C²-butadienyl pyridine is mainly produced. These results are also consistent with the experimental results that the C²-substituted butadienyl pyridine is a main product.

Reasons Why C²-Alkenylation by Ni(P(*i*-Pr)₃)/AlMe₃ Catalyst Occurs but It Is Difficult with Ni(NHC)/AIMe3 **Catalyst.** As discussed above, the $\Delta G^{\circ \ddagger}$ value for the C–H bond activation (12 to 16 kcal mol^{-1}) is smaller in the alkenylation reactions by the Ni $(P(i-Pr)_3)$ /AlMe₃ catalyst than that by the Ni(NHC)/AlMe₃ catalyst (17 to 22 kcal mol⁻¹); especially the $\Delta G^{\circ \ddagger}$ value for the C²–H bond activation is much smaller (12.6 kcal mol⁻¹) in the NiP(*i*-Pr)₃/AlMe₃-catalyzed reaction than in the Ni(NHC)/AlMe₃-catalyzed reaction (22 kcal mol⁻¹). To inspect the reason for these results, we investigated the steric repulsion of AlMe₃ with NHC and $P(i-Pr)_3$ ligands. To evaluate the steric repulsion, the ONIOM scheme shown in Scheme S1 and eq 1 was employed, as discussed above. As seen in Table 3, the steric repulsion (2.07 kcal mol^{-1}) in the C⁴-alkenylation is somewhat larger in the NiP(i-Pr)₃/AlMe₃ catalyst than in the $Ni(NHC)/AlMe_3$ catalyst (1.66 kcal mol⁻¹). In the C³alkenylation, the steric repulsion in the $NiP(i-Pr)_3/AlMe_3$ catalyst is moderately larger (2.02 kcal mol⁻¹) than in the $Ni(NHC)/AlMe_3$ catalyst (1.86 kcal mol⁻¹). On the other hand, the steric repulsion in the C²-alkenylation (1.38 kcal mol⁻¹) is substantially smaller in the NiP(i-Pr $)_3$ /AlMe $_3$ catalyst than in the $Ni(NHC)/AlMe_3$ one (5.37 kcal mol⁻¹). These results suggest that the smaller steric repulsion favors the C²-alkenylation by the $Ni(P(i-Pr)_3)/AlMe_3$ catalyst over the $Ni(NHC)/AlMe_3$ catalyst. The steric repulsion reflects in the Cⁿ-Ni-NHC and Cⁿ-Ni-P angles (C^n = the pyridine C atom reacting with H atom) in **TS2** of the Ni(NHC)/AlMe₃ and Ni($P(i-Pr)_3$)/AlMe₃ reaction systems, respectively, because it is likely that the large steric repulsion increases these angles. We examined the relation between the steric repulsion and these angles and found that, in the Ni(NHC)/AlMe₃ catalyst, the C^2 -Ni-NHC angle is larger in the C^2 -alkenylation than the corresponding angles in the C^3 and C⁴-alkenylations but, in the Ni $(P(i-Pr)_3)/AlMe_3$ catalyst, the C^2 -Ni-P angle is smaller in the C^2 -aklenylation than in the others. These results indicate again that the steric repulsion plays an important role in determining the regioselectivity and also that the difference in regioselectivity between the Ni(NHC)/

AlMe₃ and Ni(P(i-Pr)₃)/AlMe₃ catalysts arises from the difference in steric repulsion; see the discussion on page S39 and Table S12.

The electronic effect is also important for accelerating the C^2 -H bond activation over the C^3 -H and C^4 -H bond activations. The population changes in the alkenylation reaction by the $Ni(P(i-Pr)_3)/AlMe_3$ catalyst are similar to those by Ni(NHC)/AlMe₃ catalyst except for several important differences, which will be discussed below; see Figures S14C and S15C and Tables S13 to S15. In the Ni $(P(i-Pr)_3)$ /AlMe₃-catalyzed reactions, the electron population of the pyridine-AlMe₃ moiety increases much more in **TS2** of the C^2 -alkenvlation (0.154e) than in the C^{4} -one (0.141e), and it is the smallest in the C^{3} -alkenylation (0.121e). In **TS2** of the Ni(NHC)/AlMe₃-catalyzed reaction, the electron population of pyridine-AlMe₃ moiety is similar or slightly larger in C^2 -alkenylation (0.131e) than in the C^4 -one (0.124e) and it is smallest in the C³-alkenylation (0.095e). These population changes in pyridine-AlMe3 moiety suggest that the CT from Ni to pyridine–AlMe₃ is substantially larger in the C^{2} alkenylation than in the C⁴-alkenylation and it is smallest in the C^{3} -alkenyation by the Ni(P(*i*-Pr)₃)/AlMe₃ catalyst. These CT interactions from Ni to pyridine-AlMe3 more stabilize TS2 of the C^2 -alkenylation than that of the C^4 -alkenylation in the $Ni(P(i-Pr)_3)/AlMe_3$ catalyst. On the other hand, this stabilization of TS2 by CT interaction is similar or slightly larger in the C^4 -alkenylation than in the C^2 -alkenylation by the Ni(NHC)/ AlMe₃ catalyst.

In summary, both the steric effect and the electronic factor favor the C²-alkenylation over the C⁴-alkenylation in the Ni(P(*i*-Pr)₃)/AlMe₃ catalyst. Therefore, the C²-alkenylation selectively occurs in the Ni(P(*i*-Pr)₃)/AlMe₃-catalyzed reaction unlike in the Ni(NHC)/AlMe₃-catalyzed one.

CONCLUDING REMARKS

In this theoretical study, we explored the regioselective alkenylation of pyridine by the Ni(NHC)/AlMe₃ cooperative catalyst to clarify the reaction mechanism, uncover the characteristic features of electronic processes of all elementary steps, and elucidate the factors determining the regioselectivity. The first step of the catalytic cycle is the coordination of pyridine–AlMe₃ with the active species $Ni^{(0)}(NHC)(C_2H_2)$ 1 in an n^2 -fashion to form an intermediate Int1. Int1 isomerizes to Int2, which undergoes the oxidative addition of the C-H bond of pyridine to the nickel-acetylene moiety to afford a Ni(II) pyridyl vinyl NHC complex Int3. This oxidative addition is understood to be the H¹-transfer from pyridine-AlMe₃ to the acetylene moiety, which is different from the usual transition state for the concerted oxidative addition. From Int3, acetylene coordination takes place to afford Int4. The final step is the reductive elimination of vinyl-pyridine product P1. The formation of butadienyl-pyridine product P2 proceeds from Int4 through the insertion of the second acetylene into the Nivinyl bond followed by the third acetylene coordination and the reductive elimination.

The oxidative addition of the C–H bond is the ratedetermining step in the whole catalytic cycle. The $\Delta G^{\circ \dagger}$ value for the C²–H bond activation is the largest (22.1 kcal mol⁻¹), that for the C³–H bond activation is the next (21.5 kcal mol⁻¹), and that for the C⁴–H bond activation is the smallest (17.4 kcal mol⁻¹). These results agree with the experimental facts that the C⁴-alkenylated pyridine–AlMe₃ is a major product, the C³alkenylated one is a minor, and the C² one is not formed. The selectivity was discussed with two factors: (i) the steric repulsion between bulky *N*,*N*-diphenyl NHC ligand and AlMe₃ and (ii) the electronic factor for the C–H bond activation. It is concluded that the electronic factor facilitates the C²- and C⁴-alkenylations preferably to the C³ one and the steric factor facilitates the C³- and C⁴-alkenylations. Thereby the C⁴-alkenylation occurs selectively in the Ni(NHC)/AlMe₃-catalyzed reaction.

In the absence of AlMe₃, pyridine coordinates with the Ni atom through the N of pyridine to form a stable intermediate. As a result, the Gibbs activation energy ($\Delta G^{\circ \ddagger} = \sim 27 \text{ kcal mol}^{-1}$) of the C–H bond activation increases. Also, the CT from Ni to pyridine is smaller in the absence of AlMe₃ than in the presence of AlMe₃. These are two important reasons why the alkenylation without Lewis acid is difficult.

In the alkenylation reaction by Ni(P(*i*-Pr)₃)/AlMe₃ catalyst, the steric effect is somewhat larger in the C⁴-alkenylation than in the C²-alkenylation. Also the electronic factor favors the C²alkenylation over the C⁴-alkenylation in the Ni(P(*i*-Pr)₃)/ AlMe₃-catalyzed reaction. As a result, the C²-alkenylation selectively occurs in the Ni(P(*i*-Pr)₃)/AlMe₃-catalyzed reaction unlike in the Ni(NHC)/AlMe₃-catalyzed one. It is noted the $\Delta G^{\circ \ddagger}$ value for the second acetylene insertion into the Ni–vinyl bond (**TS4**) is smaller than the reductive elimination of **P1** (**TS3**), leading to the formation of C²-substituted butadienyl pyridine product **P2**. These results arise from the smaller size of P(*i*-Pr)₃ than the NHC.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b02394.

Geometry, energy, and NBO population changes, ONIOM details, basis set effects, translational entropy corrections, and Cartesian coordinates (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: milind.deshmukh@gmail.com.

*E-mail: sakaki.shigeyoshi.47e@st.kyoto-u.ac.jp.

ORCID [©]

Milind M. Deshmukh: 0000-0003-3518-7859

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Authors wish to thank University Grant Commission (UGC), New Delhi, for the start-up grant (No. F. 30-56/2014/BSR). S.S. is thankful for financial support by the Ministry of Education, Culture, Science, Sport and Technology through Grant-in-Aid "Stimuli-responsive Chemical Species for the Creation of Functional Molecules (No.2408)" (JSPS KAKENHI Grant No. JP15H00940), Grant-in-Aid for Scientific Research (JP15H03770), and Japan Science and Technology Cooperation (CREST "Establishment of Molecular Technology towards the Creation of New Functions" Area). Some of the computations were performed using Research Center for Computational Science, Okazaki, Japan. V.S. is thankful to Dr. Harisingh Gour University, Sagar, India, for research fellowship.

REFERENCES

(1) Daly, J. W.; Garraffo, H. M.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; Pergamon, New York, 1999; Vol. 13, p 1–161.

(2) (a) Bosch, J.; Bennasar, M.-L. Synlett **1995**, 587–596. (b) Sinclair, A.; Stockman, R. A. Nat. Prod. Rep. **2007**, 24, 298–326.

(3) (a) Su, R.; Wei, H.; Zhang, X.; Ma, S.; Yan, J.; Cui, Y.; Zhang, Z. J. *Heterocycl. Chem.* **2014**, *51*, 669–673. (b) Babu, S. S.; Praveen, V. K.; Ajayaghosh, A. *Chem. Rev.* **2014**, *114*, 1973–2129.

(4) Katritzky, A. R.; Taylor, R. Adv. Heterocycl. Chem. 1990, 47, 1-4.

(5) Katritzky, A. R.; Fan, W.-Q. Heterocycles 1992, 34, 2179–2229.

(6) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. *Chem. Rev.* **2012**, *112*, 2642–2713.

(7) For some of the important references on the C-H bond activation of aromatic compounds, see: (a) Kakiuchi, F.; Murai, S. In Activation of Unreactive Bonds and Organic Synthesis; Murai, S., Ed.; Springer: Berlin, 1999; pp 47–79. (b) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon: Oxford, 2000; Chapter 4 and references therein. (c) Moore, E. J.; Pretzer, W. R.; O'Connell, T. J.; Harris, J.; La Bounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114, 5888–5890. (d) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778–779. (e) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731–1770 and references therein.

(8) Murakami, M.; Hori, S. J. Am. Chem. Soc. 2003, 125, 4720–4721.
(9) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332–5333.

(10) Tobisu, M.; Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131, 12070–12071.

(11) Kawashima, T.; Takao, T.; Suzuki, H. J. Am. Chem. Soc. 2007, 129, 11006.

(12) Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Baidossi, M.;
Ponde, D. E.; Sasson, Y. J. Chem. Soc., Perkin Trans. 2 2000, 1809–1812.
(13) Grigg, R.; Savic, V. Tetrahedron Lett. 1997, 38, 5737–5740.

(14) (a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020–18021. (b) Leclerc, J.-P.; Fagnou, K. Angew. Chem., Int. Ed. 2006, 45, 7781–7786. (c) Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872–8874.

(15) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. **2008**, 130, 2448–2449.

(16) For review on C^2 -, C^3 -, and C^4 -functionalization of pyridine, see: *Synthesis* **2011**, *20*, 3209–3219.

(17) Tsai, C.-C.; Shih, W.-C.; Fang, C.-H.; Li, C.-Y.; Ong, T.-G.; Yap, G. P. A. J. Am. Chem. Soc. 2010, 132, 11887–11889.

(18) Nakao, Y.; Yamada, Y.; Kashihara, N.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 13666–13668.

(19) For C³-selective catalytic C-C bond formation with pyridines, see: (a) Ye, M.; Gao, G.-L.; Edmunds, A. J. F.; Worthington, P. A.; Morris, J. A.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19090-19093.
(b) Ye, M.; Gao, G.-L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 6964-6967.

(20) For Ir-catalyzed C³-selective catalytic C-C bond formation with pyridines, see: (a) Li, B.-J.; Shi, Z.-J. Chem. Sci. 2011, 2, 488-493.
(b) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992-2002.

(21) For the C⁴-selective catalytic alkenylation/alkylation of pyridines, see: (a) Andou, T.; Saga, Y.; Komai, H.; Matsunaga, S.; Kanai, M. *Angew. Chem.* **2013**, *125*, 3295–3298.

(22) Oshima, K.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2011, 133, 7324–7327.

(23) (a) Bair, J. S.; Schramm, Y.; Sergeev, A. G.; Clot, C.; Eisenstein,
O.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 13098-13101.
(b) Guihaumé, J.; Halbert, S.; Eisenstein, O.; Perutz, R. N. Organo-

metallics **2012**, *31*, 1300–1314. (24) Guan, W.; Sakaki, S.; Kurahashi, T.; Matsubara, S. ACS Catal. **2015**, *5*, 1–10.

(25) (a) Vastine, B. A.; Hall, M. B. *J. Am. Chem. Soc.* **2007**, *129*, 12068–12069. (b) Ess, D. H.; Goddard, W. A., III; Periana, R. A. Organometallics **2010**, *29*, 6459–6472.

(26) (a) Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. **1988**, 38, 3098–3100. (b) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652.

(27) Perdew, J. P.; Wang, Y. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45, 13244–13249.

(28) (a) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta. 1973, 28, 213–222. (b) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.;

The Journal of Organic Chemistry

Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654-3665.

(29) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283.
(b) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284–298. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299–310.

(30) (a) Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H. *Mol. Phys.* **1993**, *80*, 1431–1441. (b) Kaupp, M.; Schleyer, P. v. R.; Stoll, H.; Preuss, H. *J. Chem. Phys.* **1991**, *94*, 1360–1366. (c) Dolg, M.; Stoll, H.; Preuss, H.; Pitzer, R. M. *J. Phys. Chem.* **1993**, *97*, 5852–5859.

(31) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. *J. Chem. Phys.* **2010**, *132*, 154104. (b) The dispersion corrected B3LYP-D3 functional is employed because the steric repulsion between the ligand and Lewis acid is one of the important factors which affect the energetics of reactions and hence the regioselectivity of the product. Also, we recalculated the Gibbs activation barrier for the rate-determining step with various functionals; see p S24 and Table S8A. The present results at the B3LYP-D3/BS-II level are in good agreement with those at the M06/BS-II level, recommended in the earlier works (see refs 24 and 34) of Ni/LA-catalyzed reactions.. (c) The basis set effect were also examined; see p S25 and Table S8B.

(32) Frisch, M. J.; et al. *Gaussian 09*, revision B.01; Gaussian, Inc.: Wallingford, CT, 2010; see Supporting Information p S43 for complete reference.

(33) (a) Barone, V.; Cossi, M. J. J. Phys. Chem. A 1998, 102, 1995.
(b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. J. Comput. Chem. 2003, 24, 669. (c) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3093. (d) Mammen, M.; Shakhnovich, E. I.; Deutch, J. M.; Whitesides, G. M. J. Org. Chem. 1998, 63, 3821–3830.

(34) (a) Guan, W.; Sayyed, F. B.; Zeng, G.; Sakaki, S. Inorg. Chem. 2014, 53, 6444–6457. (b) Sakaki, S. Bull. Chem. Soc. Jpn. 2015, 88, 889– 938.

(35) The reductive elimination of product **P1** is also possible starting from **Int3a**. In this step, **Int3a** isomerizes to the more stable **Int3a**' (by $-6.07 \text{ kcal mol}^{-1}$) via vinyl rotation ($\Delta G^{\circ \ddagger}_{rot} = 8.3 \text{ kcal mol}^{-1}$) followed by the reductive elimination from **Int3a**' with an activation barrier of 8.7 kcal mol⁻¹; see p S44. This step of vinyl rotation is very similar to that discussed by Eisenstein et al; see ref 23.

(36) We also investigated the reductive elimination of product P2 starting from Int5a. In this step, Int5a isomerizes to the more stable Int5a' (by -6.75 kcal mol⁻¹) via butadienyl rotation ($\Delta G^{\circ \dagger}_{rot} = 6.8$ kcal mol⁻¹) followed by the reductive elimination from Int5a' with an activation barrier of 8.2 kcal mol⁻¹; See p S45. The step of vinyl rotation is very similar to that discussed by Eisenstein et al; see ref 23.

(37) For instance: (a) Sakaki, S.; Ieki, M. J. Am. Chem. Soc. **1993**, 115, 2373–2381. (b) Sakaki, S.; Mizoe, N.; Musashi, Y.; Biswas, B.; Sugimoto, H. J. Phys. Chem. A **1998**, 102, 8027–8036. (c) Ochi, N.; Nakao, Y.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. **2007**, 129, 8615–8624.

(38) The Gibbs energy was not considered in the ONIOM calculation because the model as well as the real substituent structures were taken from corresponding real and model complexes without geometry optimization; in other words, vibration movement cannot be evaluated. The trend in the Gibbs energy barrier for model complex and that of the real system agree with that in electronic energy; see Table S9 and Table 3.